Question 73262: Three sets A,B and C and the universal set, U, are such that
n(A)=21, n(B)=30, n(C)=30, n(A∩B)=11, n(B∩C)=17, n(A∩C)=13, n(A U B U C)'=13, n(U)=60 (U=union, '=complement)
if P(X) is the probability that a randomly chosen element from the universal set is in set X determine:
a) P(A∩B∩C)
b) P(A U B)
c) P(A U C)'
d) P(A∩B∩C|A U B U C)
e) P(A|(B U C)')
f) P(A'|B')
THANKYOU
Answer by Edwin McCravy(20055) (Show Source):
You can put this solution on YOUR website! There are 8 disjoint regions:
A∩B∩C, A∩B∩C', A∩B'∩C, A∩B'∩C', A'∩B∩C, A'∩B∩C', A'∩B'∩C, A'∩B'∩C'.
The "sieve" formula for 3 sets:
n(AUBUC) = n(A)+n(B)+n(C)-n(A∩B)-n(A∩C)-n(B∩C)+n(A∩B∩C)
[If you haven't had this sieve formula, please post again, or email
me AnlytcPhil@aol.com and I can show you how to do it without that
formula. But it's easier if you have it.]
We also know
n(A∩B∩C) = n(U) - n[(A∩B∩C)'] = 60 - 13 = 47
Substituting what we have in the sieve formula:
47 = 21 + 30 + 30 - 11 - 13 - 17 + n(A∩B∩C)
47 = 40 + n(A∩B∩C)
n(A∩B∩C) = 7
From that we can get the number of elements in each of the other
seven disjoint regions:
1. n(A∩B∩C) = 7
2. n(A∩B∩C') = n(A∩B)-n(A∩B∩C) = 11-7 = 4
3. n(A∩B'∩C) = n(A∩C)-n(A∩B∩C) = 13-7 = 6
4. n(A'∩B∩C) = n(B∩C)-n(A∩B∩C) = 17-7 = 10
5. n(A∩B'∩C') = n(A)-n(A∩B∩C')-n(A∩B'∩C)-n(A∩B∩C) = 21-4-6-7 = 4
6. n(A'∩B∩C') = n(B)-n(A∩B∩C')-n(A'∩B∩C)-n(A∩B∩C) = 30-4-10-7 = 9
7. n(A'∩B'∩C) = n(C)-n(A∩B'∩C)-n(A'∩B∩C)-n(A∩B∩C) = 30-6-10-7 = 7
a) P(A∩B∩C)
n(A∩B∩C)=47, so P(A∩B∩C) = 47/n(U) = 47/60
----------------------
b) P(AUB)
n(AUB)=n(AUBUC)-n(A'B'∩C) = 47-7 = 40, so
P(AUB) = n(AUB)/n(U) = 40/60 = 2/3
-------------------------
c) P[(A U C)']
n(AUC) = n(AuBuC)-n(A'∩B∩C') = 47 - 9 = 38, so
P(AUC) = 38/40 = 19/20, and
P[(AUC)'] = 1 - P(AUC) = 1 - 19/20 = 1/20
------------------------
d) P(A∩B∩C|A U B U C) =
P[(A∩B∩C)n(AUBUC)] P(A∩B∩C) n(A∩B∩C)/n(U) 7/60
-------------------- = ----------- = --------------- = ------- = 7/47
P(AUBUC) P(AuBuC) n(AuBuC)/n(U) 47/60
------------------------
P(An(BUC)') P(A∩B'∩C')
e) P[A|(BUC)'] = ------------- = (by DeMorgan's law) = ------------- =
P[(BUC)'] P(B'∩C')
n(A∩B'∩C')/n(U) 4/60 4
----------------- = ------------- = ----------
P(B'∩C') n(B'∩C')/60 n(B'∩C')
Since n(B'∩C') = n(A∩B'∩C')+n(A'∩B'∩C') = 4+13 = 17, the above = 4/17
------------------------
P(A'∩B') P[(AUB)']
f) P(A'|B') = ---------- = (by DeMorgan's law) = ----------- =
P(B') P(B')
1 - P(AUB) 1 - 2/3 1/3
------------ = [By prob (b)] = --------------- = ----------- =
1 - P(B) 1 - n(B)/n(U) 1 - 30/60
1/3 1/3
--------- = ----- = (1/3)(2/1) = 2/3
1 - 1/2 1/2
Edwin
|
|
|