SOLUTION: factor 3x^2 + 8x - 3

Algebra ->  Functions -> SOLUTION: factor 3x^2 + 8x - 3      Log On


   



Question 725822: factor
3x^2 + 8x - 3

Answer by jim_thompson5910(35256) About Me  (Show Source):
You can put this solution on YOUR website!

Looking at the expression 3x%5E2%2B8x-3, we can see that the first coefficient is 3, the second coefficient is 8, and the last term is -3.


Now multiply the first coefficient 3 by the last term -3 to get %283%29%28-3%29=-9.


Now the question is: what two whole numbers multiply to -9 (the previous product) and add to the second coefficient 8?


To find these two numbers, we need to list all of the factors of -9 (the previous product).


Factors of -9:
1,3,9
-1,-3,-9


Note: list the negative of each factor. This will allow us to find all possible combinations.


These factors pair up and multiply to -9.
1*(-9) = -9
3*(-3) = -9
(-1)*(9) = -9
(-3)*(3) = -9

Now let's add up each pair of factors to see if one pair adds to the middle coefficient 8:


First NumberSecond NumberSum
1-91+(-9)=-8
3-33+(-3)=0
-19-1+9=8
-33-3+3=0



From the table, we can see that the two numbers -1 and 9 add to 8 (the middle coefficient).


So the two numbers -1 and 9 both multiply to -9 and add to 8


Now replace the middle term 8x with -x%2B9x. Remember, -1 and 9 add to 8. So this shows us that -x%2B9x=8x.


3x%5E2%2Bhighlight%28-x%2B9x%29-3 Replace the second term 8x with -x%2B9x.


%283x%5E2-x%29%2B%289x-3%29 Group the terms into two pairs.


x%283x-1%29%2B%289x-3%29 Factor out the GCF x from the first group.


x%283x-1%29%2B3%283x-1%29 Factor out 3 from the second group. The goal of this step is to make the terms in the second parenthesis equal to the terms in the first parenthesis.


%28x%2B3%29%283x-1%29 Combine like terms. Or factor out the common term 3x-1


===============================================================


Answer:


So 3x%5E2%2B8x-3 factors to %28x%2B3%29%283x-1%29.


In other words, 3x%5E2%2B8x-3=%28x%2B3%29%283x-1%29.


Note: you can check the answer by expanding %28x%2B3%29%283x-1%29 to get 3x%5E2%2B8x-3 or by graphing the original expression and the answer (the two graphs should be identical).