SOLUTION: Please help me solve this exponential equation: (e^x + e^-x) / (e^x - e^-x) = 3
Algebra
->
Logarithm Solvers, Trainers and Word Problems
-> SOLUTION: Please help me solve this exponential equation: (e^x + e^-x) / (e^x - e^-x) = 3
Log On
Algebra: Logarithm
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on logarithm
Question 723751
:
Please help me solve this exponential equation: (e^x + e^-x) / (e^x - e^-x) = 3
Answer by
stanbon(75887)
(
Show Source
):
You can
put this solution on YOUR website!
(e^x + e^-x) / (e^x - e^-x) = 3
-------
(e^x + (1/e^x))/ (e^x - (1/e^x)) = 3
----
(e^(2x) + 1)/e^x] / (e^(2x) -1)/e^x = 3
-----
[e^(2x) + 1)/(e^(2x)-1 = 3
-----
e^(2x) + 1 = 3e^(2x) - 3
----
2e^(2x) = 4
---
e^(2x) = 2
-----
2x = ln(2)
x = ln(2)/2
x = 0.3466
==============
Cheers,
Stan H.
==============