SOLUTION: esatblish each idenntity cot theta - tan theta over cot theta + tan theta = cos 2theta

Algebra ->  Trigonometry-basics -> SOLUTION: esatblish each idenntity cot theta - tan theta over cot theta + tan theta = cos 2theta      Log On


   



Question 703820: esatblish each idenntity


cot theta - tan theta over cot theta + tan theta = cos 2theta

Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
cot theta - tan theta over cot theta + tan theta = cos 2theta
use x for theta
(cotx-tanx)/(cotx+tanx)=cos2x
start with left side:
(cotx-tanx)/(cotx+tanx)
=[(cosx/sinx)-(sinx/cosx)]/[(cosx/sinx)+(sinx/cosx)]
=[(cos^2x-sin^2x)/(sinxcosx)]/[(cos^2x+sin^2x)/(sinxcosx)]
sinxcosx cancels out, (cos^2x+sin^2x)=1
=(cos^2x-sin^2x)
=cos2x
verified: left side=right side