SOLUTION: for each function f and g,find f(g(x)) and g(f(x)) F(x)=|x| and g (x)=4x - 1
Algebra
->
Trigonometry-basics
-> SOLUTION: for each function f and g,find f(g(x)) and g(f(x)) F(x)=|x| and g (x)=4x - 1
Log On
Algebra: Trigonometry
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Trigonometry-basics
Question 698955
:
for each function f and g,find f(g(x)) and g(f(x))
F(x)=|x| and g (x)=4x - 1
Answer by
jim_thompson5910(35256)
(
Show Source
):
You can
put this solution on YOUR website!
f(x) = |x|
f(g(x)) = |g(x)|
f(g(x)) = |4x-1|
-----------------------------------------------------------------------------
g(x) = 4x-1
g(f(x)) = 4(f(x))-1
g(f(x)) = 4(|x|)-1
g(f(x)) = 4*|x| - 1