SOLUTION: find the following quotient using long division: (3x^4-5x^3-25x-3)/(x^2+x+3)

Algebra ->  Polynomials-and-rational-expressions -> SOLUTION: find the following quotient using long division: (3x^4-5x^3-25x-3)/(x^2+x+3)      Log On


   



Question 690003: find the following quotient using long division: (3x^4-5x^3-25x-3)/(x^2+x+3)
Found 2 solutions by monica35, jsmallt9:
Answer by monica35(6) About Me  (Show Source):
You can put this solution on YOUR website!
%283x%5E4-5x%5E3-25x-3%29%2F%28x%5E2%2Bx%2B3%29
Is this what the problem should look like? Or is it divide by %283x%5E4-5x%5E3-25x-3%29by%28x%5E2%2Bx%2B3%29

Answer by jsmallt9(3758) About Me  (Show Source):
You can put this solution on YOUR website!
          3x^2  -8x  -1
         ______________________________
x^2+x+3 / 3x^4  -5x^3  +0x^2  -25x  -3   (Note the 0x^2! Always include "missing terms")
          3x^4  +3x^3  +9x^2
          ------------------
                -8x^3  -9x^2  -25x
                -8x^3  -8x^2  -24x
                ------------------
                        -x^2    -x  -3
                        -x^2    -x  -3
                        --------------
                                     0

So %283x%5E4-5x%5E3-25x-3%29%2F%28x%5E2%2Bx%2B3%29+=+3x%5E2++-8x++-1