SOLUTION: multiply (x^4+3)(x^4-5) and multiply (-2x-3)^2

Algebra ->  Systems-of-equations -> SOLUTION: multiply (x^4+3)(x^4-5) and multiply (-2x-3)^2      Log On


   



Question 68889: multiply (x^4+3)(x^4-5)
and
multiply (-2x-3)^2

Answer by rmromero(383) About Me  (Show Source):
You can put this solution on YOUR website!
(x^4+3)(x^4-5)
FOIL METHOD 
Multiply F = First terms
Multiply O = Outer terms
Multiply I = Inner terms
Multiply L = Last terms
(x^4 + 3)(x^4 - 5) (x^4 + 3)(x^4 - 5)
| | | |
| | | |
First First Outer Outer
(x^4 + 3)(x^4 - 5) (x^4 + 3)(x^4 - 5)
| | | |
| | | |
Inner Last Last


x%5E4+%28x%5E4%29+%2B+x%5E4%28-5%29%2B+3%28x%5E4%29+%2B+3%28-5%29
x%5E8+-+5x%5E4+%2B+3x%5E4+-+15 Simplify
x%5E8+-+2x%5E4+-+15 Combine like term


%28-2x-3%29%5E2
| |
base Exponent
exponent indicates how many times you will multiply the base.
(-2x - 3)(-2x - 3)
Use FOIL Method
-2x(-2x) + (-2x)(-3) + (-3)(-2x) + (-3)(-3)
4x%5E2+%2B+6x+%2B+6x+%2B+9
Answer:
4x%5E2+%2B12x+%2B+9