SOLUTION: (tanx)/(cscx-cotx)-(sinx)/(cscx+cotx)=secx+cosx
Algebra
->
Trigonometry-basics
-> SOLUTION: (tanx)/(cscx-cotx)-(sinx)/(cscx+cotx)=secx+cosx
Log On
Algebra: Trigonometry
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Trigonometry-basics
Question 685442
:
(tanx)/(cscx-cotx)-(sinx)/(cscx+cotx)=secx+cosx
Answer by
mananth(16946)
(
Show Source
):
You can
put this solution on YOUR website!
LCD = (cscx-cotx)(cscx+cotx)
((tanx*cscx+tanx*cotx)-(sinx*cscx-sinx.cotx))/(csc^2x-cot^2x)
((1/cosx)+1)-(1-cosx))/1
(1/cosx)+1-1+cosx)
(1/cosx)+cosx
= secx + cosx