SOLUTION: factor completely: g(x)= -1/4(x^4-x^3-5x^2-x-6) If g(3)=0 and g(4)= -25 1/2

Algebra ->  Polynomials-and-rational-expressions -> SOLUTION: factor completely: g(x)= -1/4(x^4-x^3-5x^2-x-6) If g(3)=0 and g(4)= -25 1/2      Log On


   



Question 676329: factor completely: g(x)= -1/4(x^4-x^3-5x^2-x-6) If g(3)=0 and g(4)= -25 1/2
Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
factor completely: g(x)= -1/4(x^4-x^3-5x^2-x-6) If g(3)=0 and g(4)= -25 1/2
---------
Since g(3) = 0, x-3 is a factor of g(x)
-----------
3)....1....-1....-5....-1....-6
......1....2.....1.....2...|..0
-----
Quotient: x^3+2x^2+x+2
= x^2(x+2)+(x+2)
---------
= (x+2)(x^2+1)
=====================
g(x) = (-1/4)(x-3)(x+2)(x^2+1)
================================
Cheers,
stan H.