Question 676063:  Given that tan(theta)=5/4 , pi< theta < 3pi/2, find sin(2theta), cos(2theta), sin(theta/2), cos(theta/2), tan(2theta),  and tan(theta/2) 
 Answer by lwsshak3(11628)      (Show Source): 
You can  put this solution on YOUR website! Given that tan(theta)=5/4 , pi< theta < 3pi/2, find sin(2theta), cos(2theta), sin(theta/2), cos(theta/2), tan(2theta), and tan(theta/2) 
** 
use x in place of theta 
interval: π ≤ x ≤ 3π/2 
You are working with a reference angle in quadrant III where tan>0, sin & cos<0 
given tan x=5/4=opp side/adj side 
hypotenuse=√(5^2+4^2)=√(25+16)=√41 
sinx=5/√41 
cosx=4/√41 
.. 
sin(2x)=2sinxcosx=2*5/√41*4/√41=40/41 
check: (with calculator set to radians) 
tan^-1(5/4)≈.896 
sin(2x)=sin(1.792)≈.9756 
40/41≈.9756 
.. 
do the remaining problems by the same procedure. 
substitute, solve and check: note: (x=0.896 radians) 
.. 
cos(2x)=cos^2x-sin^2x 
sin(x/2)=-[√(1-cosx)/2)] 
cos(x/2)=-[√(1+cosx)/2)]x 
tan(2x)=(2tanx)/(1-tan^2x) 
tan(x/2)=sinx/(1+cosx) 
.. 
This is a lot of work. good luck! 
 
  | 
 
  
 
 |   
 
 |