| 
 
 
| Question 676063:  Given that tan(theta)=5/4 , pi< theta < 3pi/2, find sin(2theta), cos(2theta), sin(theta/2), cos(theta/2), tan(2theta),  and tan(theta/2)
 Answer by lwsshak3(11628)
      (Show Source): 
You can put this solution on YOUR website! Given that tan(theta)=5/4 , pi< theta < 3pi/2, find sin(2theta), cos(2theta), sin(theta/2), cos(theta/2), tan(2theta), and tan(theta/2) **
 use x in place of theta
 interval: π ≤ x ≤ 3π/2
 You are working with a reference angle in quadrant III where tan>0, sin & cos<0
 given tan x=5/4=opp side/adj side
 hypotenuse=√(5^2+4^2)=√(25+16)=√41
 sinx=5/√41
 cosx=4/√41
 ..
 sin(2x)=2sinxcosx=2*5/√41*4/√41=40/41
 check: (with calculator set to radians)
 tan^-1(5/4)≈.896
 sin(2x)=sin(1.792)≈.9756
 40/41≈.9756
 ..
 do the remaining problems by the same procedure.
 substitute, solve and check: note: (x=0.896 radians)
 ..
 cos(2x)=cos^2x-sin^2x
 sin(x/2)=-[√(1-cosx)/2)]
 cos(x/2)=-[√(1+cosx)/2)]x
 tan(2x)=(2tanx)/(1-tan^2x)
 tan(x/2)=sinx/(1+cosx)
 ..
 This is a lot of work. good luck!
 
 | 
  
 | 
 |