SOLUTION: Find all t in the interval [0, 2π] satisfying (cos t)2 + 4 cos t + 3 = 0.

Algebra ->  Trigonometry-basics -> SOLUTION: Find all t in the interval [0, 2π] satisfying (cos t)2 + 4 cos t + 3 = 0.       Log On


   



Question 673022: Find all t in the interval [0, 2π] satisfying (cos t)2 + 4 cos t + 3 = 0.



Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
Find all t in the interval [0, 2π] satisfying (cos t)2 + 4 cos t + 3 = 0.
cos ^2 t+4cos t+3=0
(cos t+3)(cos t+1)=0
cos t+3=0
cos t=-3 (reject, (-1 ≤ cos t ≤1)
(cos t+1)=0
cos t=-1
t=π