| 
 
 
| Question 672645:  Use the given information to find cos(x/2), sin(x/2), and tan(x/2):
 tan x = 2, pi < x < 3pi/2
 Here is my solution, but I don't know how to get sin(x/2) and tan(x/2):
 1 + (2)^2 = sec^2x
 5 = sec^2x
 sec x = -sqrt(5)
 cos x = -1 / sqrt(5) = -sqrt(5)/5
 cos^2(x/2) = 1/2(1+(-sqrt(5)/5))
 = 5-(sqrt(5)/10)
 cos(x/2) = -sqrt(5-sqrt(5)/10)
 sin^2(x/2) = 1/2(1-(-sqrt(5)/5))
 = 5+(sqrt(5)/10)
 sin(x/2) = ?
 tan(x/2) = ?
 Answer by lwsshak3(11628)
      (Show Source): 
You can put this solution on YOUR website! Use the given information to find exact values of cos(x/2), sin(x/2), and tan(x/2): tan x = 2, pi < x < 3pi/2
 **
 Given information shows that x is in quadrant III, where cos<0, sin<0, tan>0
 tanx=2=opp side/adj side=2/1
 hypotenuse=√(2^2+1^2)=√(4+1)=√5
 sinx=opp side/hypotenuse=-2/√5
 cosx=adj side/hypotenuse=-1/√5
 ..
 use half-angle identities to solve
 cos(x/2)=±[√(1+(cosx)/2)]
 =-[√(1-(1/√5)/2)]
 =-[√(√5-1)/2√5)]
 ..
 sin(x/2)=±[√(1-(cosx)/2)]
 =-[√(1+(1/√5)/2)]
 =-[√(√5+1)/2√5)]
 ..
 tan(x/2)=sinx/(1+cosx)
 =-2√5/(1-(1/√5)
 =-2√5/(√5-1)/√5
 =-2/√5-1
 
 | 
  
 | 
 |