SOLUTION: explain how the exact value of sin 75* can be found using either sin(a+b)=sin a cos b + cos a sin b or sin(a-b)= sin a cos b-cos a sin b
Algebra ->
Trigonometry-basics
-> SOLUTION: explain how the exact value of sin 75* can be found using either sin(a+b)=sin a cos b + cos a sin b or sin(a-b)= sin a cos b-cos a sin b
Log On
Question 671982: explain how the exact value of sin 75* can be found using either sin(a+b)=sin a cos b + cos a sin b or sin(a-b)= sin a cos b-cos a sin b Answer by lwsshak3(11628) (Show Source):
You can put this solution on YOUR website! explain how the exact value of sin 75* can be found using either sin(a+b)=sin a cos b + cos a sin b or sin(a-b)= sin a cos b-cos a sin b
**
For sin(a+b)
let a=45º
let b=30º
or
a=30º
b=45º
..
For sin(a-b)
let a=105º
let b=30º
or
a=30º
b=105º
..
higher 3-digit angles can be used, but that is seldom a requirement