SOLUTION: Determine the point of intersection for graphs of y=3(5^(2x)) and y=6(4^(3x)).

Algebra ->  Logarithm Solvers, Trainers and Word Problems -> SOLUTION: Determine the point of intersection for graphs of y=3(5^(2x)) and y=6(4^(3x)).      Log On


   



Question 670287: Determine the point of intersection for graphs of y=3(5^(2x)) and y=6(4^(3x)).
Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
Determine the point of intersection for graphs of y=3(5^(2x)) and y=6(4^(3x))
**
At the point of intersection, given equations have the same coordinates
3(5^(2x)=6(4^(3x)
(5^(2x)/(4^(3x)=6/3=2
take log of both sides
2xlog5-3log4=log2
2log5x-3log4x=log2
1.3979x-1.8062x=.30103
-0.4083x=.30103
x≈-0.7373
y≈3(5^(2x)=3*(5^(2*-0.7373))
y≈0.2795
point of intersection: (-0.7373, 0.2795)