SOLUTION: find the foci and vertices of the ellipse. x^2 y^2 --+ --=1 144 169

Algebra ->  Quadratic-relations-and-conic-sections -> SOLUTION: find the foci and vertices of the ellipse. x^2 y^2 --+ --=1 144 169      Log On


   



Question 668706: find the foci and vertices of the ellipse.
x^2 y^2
--+ --=1
144 169

Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
find the foci and vertices of the ellipse.
x^2 y^2
--+ --=1
144 169
**
Standard form of equation for an ellipse with vertical major axis: %28x-h%29%5E2%2Fb%5E2%2B%28y-k%29%5E2%2Fa%5E2=1
a>b, (h,k)=(x,y) coordinates of the center
For given equation: %28x%29%5E2%2F144%2B%28y%29%5E2%2F169=1
center: (0,0)
a^2=169
a=√169=13
vertices:(0,0±a)=(0,±13)=(0,-13) and (0,13)
b^2=144
b=√144=12
c^2=a^2-b^2=169-144=25
c=√25=5
Foci:(0,0±c)=(0,±5)=(0,-5) and (0,5)