SOLUTION: IN(2x+1)/In(3x-1)=2 3^(2-x^2)=8 5(e^(2x-2)=15

Algebra ->  Logarithm Solvers, Trainers and Word Problems -> SOLUTION: IN(2x+1)/In(3x-1)=2 3^(2-x^2)=8 5(e^(2x-2)=15       Log On


   



Question 664887: IN(2x+1)/In(3x-1)=2

3^(2-x^2)=8

5(e^(2x-2)=15

Answer by Alan3354(69443) About Me  (Show Source):
You can put this solution on YOUR website!
IN(2x+1)/In(3x-1)=2
Not IN, LN or ln, for natural logs
ln(2x+1)/ln(3x-1)=2
ln%282x%2B1%29+=+2%2Aln%283x-1%29+=+ln%28%283x-1%29%5E2%29
2x%2B1+=+%283x-1%29%5E2
etc
Solve for x, reject any values that give ln of negative numbers.
-----------------
3^(2-x^2)=8
%282-x%5E2%29%2Alog%283%29+=+log%288%29 or use ln, doesn't matter if you're consistent.
%282-x%5E2%29+=+log%288%29%2Flog%283%29
--------------------
5(e^(2x-2)=15
e%5E%282x-2%29=3
%282x-2%29+=+ln%283%29