SOLUTION: How to prove the identity (cscx-1)/(cscx+1)is equal to (cot^2x)/(csc^2x+2cscx+1)

Algebra ->  Trigonometry-basics -> SOLUTION: How to prove the identity (cscx-1)/(cscx+1)is equal to (cot^2x)/(csc^2x+2cscx+1)      Log On


   



Question 664415: How to prove the identity (cscx-1)/(cscx+1)is equal to (cot^2x)/(csc^2x+2cscx+1)
Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
How to prove the identity (cscx-1)/(cscx+1)is equal to (cot^2x)/(csc^2x+2cscx+1)
start with left side:
(cscx-1)/(cscx+1)*(cscx+1)/(cscx+1)
=csc^2x-1/(csc^2x+2cscx+1)
=(1/sin^2x-1)/(csc^2x+2cscx+1)
=(1-sin^2x/sin^x)/(csc^2x+2cscx+1)
=(cot^2x)/(csc^2x+2cscx+1)
verified: left side=right side