Hi, there--
Set up your 3x4 augmented matrix using the coefficients and constants from the three
equations.
1, -2, -3, -5
2, 1, 1, 9
1, 3, -2, 2
(NOTE: The interface with algebra.com is not that good at drawing matrices. I typed the rows
in comma-separated formate.)
You want to perform a series of row operations to translate this matrix to reduced row echelon
form (rref) if possible.
Add -2*Row1 to Row2:
1, -2, -3, -5
0, 5, 7, 19
1, 2, -2, 2
Add -1*Row1 to Row3:
1, -2, -3, -5
0, 5, 7, 19
0, 5, 1, 7
Multiply (1/5)*Row2.
1, -2, -3, -5
0, 1, 7/5, 19/5
0, 5, 1, 7
Add 2*Row2 to Row 1
1, 0, -1/5, 13/5
0, 1, 7/5, 19/5
0, 5, 1, 7
Add -5*Row2 to Row3.
1, 0, -1/5, 13/5
0, 1, 7/5, 19/5
0, 0, -6, -12
Multiply (-1/6)*Row3.
1, 0, -1/5, 13/5
0, 1, 7/4, 19/5
0, 0, 1, 2
Add 1/5*Row3 to Row1.
1, 0, 0, 3
0, 1, 7/5, 19/5
0, 0, 1, 2
Add -7/5*Row3 to Row2.
1, 0, 0, 3
0, 1, 0, 1
0, 0, 1, 2
The matrix is now in rref. (x, y, z = 3, 1, 2)
~Mrs. Figgy