SOLUTION: 1. suppose that the iq score of a large companys management trainees are normally distributed with a mean of 120 and a standard Deviation of 20
i) What Proportion of the company
Algebra ->
Probability-and-statistics
-> SOLUTION: 1. suppose that the iq score of a large companys management trainees are normally distributed with a mean of 120 and a standard Deviation of 20
i) What Proportion of the company
Log On
Question 659775: 1. suppose that the iq score of a large companys management trainees are normally distributed with a mean of 120 and a standard Deviation of 20
i) What Proportion of the company's management trainees will have IQ scores above 150?
ii) What proportion of the company,s management trainees will have IQ scores below 100? Answer by ewatrrr(24785) (Show Source):
Hi,
mean of 120 and a standard Deviation of 20
using below Chart showing the proportion of the area under the Normal distribution curve between z = 0 and the z given
P(x >150) = P(z >(150-120)/20) = P(z > 1.5) = 1 - P(z ≤ 1.5)= 1 -.9332 =.0668
P(x <100) = P(z ≤ (100-120)/20) = P(z ≤ -1) = .50 - .3413 = .1587
One may use a chart, Excel function NORMSDIST() or TI function normalcdf()
Important to Understand z -values as they relate to the Standard Normal curve:
Below: z = 0, z = ± 1, z= ±2 , z= ±3 are plotted.
Note: z = 0 , 50% of the area under the curve is to the left and 50% to the right
This particular 'chart' below shows the proportion of the area under the Normal distribution curve between z = 0 and the z given
that is to say, one would add .50 to each entry for total area under the curve to the left of a positive z value.
Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817