SOLUTION: I need HELP badly.
The diameters of grapefruits in Jones Orchard are NORMALLY distributed with a Mean of 6.70 inches and a Standard deviation of 0.60 inches.
How is this do
Algebra ->
Graphs
-> SOLUTION: I need HELP badly.
The diameters of grapefruits in Jones Orchard are NORMALLY distributed with a Mean of 6.70 inches and a Standard deviation of 0.60 inches.
How is this do
Log On
Question 658858: I need HELP badly.
The diameters of grapefruits in Jones Orchard are NORMALLY distributed with a Mean of 6.70 inches and a Standard deviation of 0.60 inches.
How is this done, show your steps for full credit!
(A) What percentage of granpefruits in Jones Orchard have diameters less than 7.4 inches?
(B) What percentage of grapefruits in Jones Orchard are larger than 7.15? Answer by ewatrrr(24785) (Show Source):
Hi,
95.25% of the granpefruits in Jones Orchard have diameters less than 7.4 inches
22.66% of the grapefruits in Jones Orchard are larger than 7.15
you didn't say WHAT You need help with: NORMALLY distributed...μ =6.7 , σ =.6
P(x < 7.4) = P( z ≤ (7.4-6.7)/.6)
= P(z ≤ 1 .667) Or P(z≤ 1.67) = .9525 (below table) Or 95.25%
P(x < 7.15) = P( z ≤ (7.15-6.7)/.6) etc...
P(x > 7.15) = 1 - P( z ≤ (7.15-6.7)/.6) = 1 - P(z = .75)
from chart: 1 - .7734 = .2266 0r 22.66%
Important to Understand z -values as they relate to the Standard Normal curve:
Below: z = 0, z = ± 1, z= ±2 , z= ±3 are plotted.
Note: z = 0 , 50% of the area under the curve is to the left and 50% to the right
This particular 'chart' below shows the amount of area under the Normal distribution curve between z = 0 and the z given
(half the total area to the left of the z-value)
that is to say, one would add .50 to each entry for total area under the curve to the left of the z value.
Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2257 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2517 0.2549
0.7 0.2580 0.2611 0.2642 0.2673 0.2704 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2995 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3238 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3577 0.3599 0.3621
1.1 0.3643 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817