SOLUTION: (x/((4x^2)-9)) - ((x+3)/((8x^2)+6x-9)) = (1/((8x^2)-18x+9))

Algebra ->  Polynomials-and-rational-expressions -> SOLUTION: (x/((4x^2)-9)) - ((x+3)/((8x^2)+6x-9)) = (1/((8x^2)-18x+9))      Log On


   



Question 64605: (x/((4x^2)-9)) - ((x+3)/((8x^2)+6x-9)) = (1/((8x^2)-18x+9))
Answer by Edwin McCravy(20056) About Me  (Show Source):
You can put this solution on YOUR website!

     x           x + 3              1  
--------- - -------------- = --------------
 4x² - 9     8x² + 6x - 9     8x²- 18x + 9

Factor all the denominators:

       x             x + 3              1  
-------------- - -------------- = --------------
 (2x-3)(2x+3)     (2x+3)(4x-3)     (4x-3)(2x-3)

LCD = (2x-3)(2x+3)(4x-3)

Put it over 1, like this

 (2x-3)(2x+3)(4x-3)
--------------------
          1

Now for each of the two fractions terms on the left,
and the one fraction term on the right, multiply
through by this fraction.

First fraction term on the left

       x          (2x-3)(2x+3)(4x-3)   
-------------- · --------------------
 (2x-3)(2x+3)             1

Cancel the (2x-3)'s and the (2x+3)'s

                     1     1     
       x          (2x-3)(2x+3)(4x-3)   
-------------- · --------------------
 (2x-3)(2x+3)             1
    1    1

      x(4x - 3)

      4x² - 4x

------------------

Second fraction term on the left

      x + 3         (2x-3)(2x+3)(4x-3)     
- -------------- · --------------------
   (2x+3)(4x-3)           1 

Cancel the (2x+3)'s and the (4x-3)'s

                             1     1
      x + 3         (2x-3)(2x+3)(4x-3)     
- -------------- · --------------------
   (2x+3)(4x-3)           1 
      1     1

- (x + 3)(2x - 3)

-(2x² - 3x + 6x - 9)

   -(2x² + 3x - 9)

    -2x² - 3x + 9


Fraction term on right:

      1           (2x-3)(2x+3)(4x-3)
-------------- · --------------------
 (4x-3)(2x-3)             1

Cancel the (4x-3)'s and the (2x-3)'s

                     1           1
      1           (2x-3)(2x+3)(4x-3)
-------------- · --------------------
 (4x-3)(2x-3)
    1     1 

      2x + 3

Now you have

      4x² - 3x - 2x² - 3x + 9 = 2x + 3

                 2x² - 6x + 9 = 2x + 3

                 2x² - 8x + 6 = 0

Divide every term by 2

                  x² - 4x + 3 = 0

Factor
               (x - 3)(x - 1) = 0

            x - 3 = 0 gives solution x = 3
            x - 1 = 0 gives solution x = 1

Neither of these cause any of the denominators
in the original to become 0, so they are
solutions.

Edwin