You can 
put this solution on YOUR website! 
     x           x + 3              1  
--------- - -------------- = --------------
 4x² - 9     8x² + 6x - 9     8x²- 18x + 9
Factor all the denominators:
       x             x + 3              1  
-------------- - -------------- = --------------
 (2x-3)(2x+3)     (2x+3)(4x-3)     (4x-3)(2x-3)
LCD = (2x-3)(2x+3)(4x-3)
Put it over 1, like this
 (2x-3)(2x+3)(4x-3)
--------------------
          1
Now for each of the two fractions terms on the left,
and the one fraction term on the right, multiply
through by this fraction.
First fraction term on the left
       x          (2x-3)(2x+3)(4x-3)   
-------------- · --------------------
 (2x-3)(2x+3)             1
Cancel the (2x-3)'s and the (2x+3)'s
                     1     1     
       x          (2x-3)(2x+3)(4x-3)   
-------------- · --------------------
 (2x-3)(2x+3)             1
    1    1
      x(4x - 3)
      4x² - 4x
------------------
Second fraction term on the left
      x + 3         (2x-3)(2x+3)(4x-3)     
- -------------- · --------------------
   (2x+3)(4x-3)           1 
Cancel the (2x+3)'s and the (4x-3)'s
                             1     1
      x + 3         (2x-3)(2x+3)(4x-3)     
- -------------- · --------------------
   (2x+3)(4x-3)           1 
      1     1
- (x + 3)(2x - 3)
-(2x² - 3x + 6x - 9)
   -(2x² + 3x - 9)
    -2x² - 3x + 9
Fraction term on right:
      1           (2x-3)(2x+3)(4x-3)
-------------- · --------------------
 (4x-3)(2x-3)             1
Cancel the (4x-3)'s and the (2x-3)'s
                     1           1
      1           (2x-3)(2x+3)(4x-3)
-------------- · --------------------
 (4x-3)(2x-3)
    1     1 
      2x + 3
Now you have
      4x² - 3x - 2x² - 3x + 9 = 2x + 3
                 2x² - 6x + 9 = 2x + 3
                 2x² - 8x + 6 = 0
Divide every term by 2
                  x² - 4x + 3 = 0
Factor
               (x - 3)(x - 1) = 0
            x - 3 = 0 gives solution x = 3
            x - 1 = 0 gives solution x = 1
Neither of these cause any of the denominators
in the original to become 0, so they are
solutions.
Edwin