SOLUTION: Prove the Following: cot^2(x)-cos^2(x)=cot^2(x)cos^2(x)

Algebra ->  Trigonometry-basics -> SOLUTION: Prove the Following: cot^2(x)-cos^2(x)=cot^2(x)cos^2(x)      Log On


   



Question 642751: Prove the Following:
cot^2(x)-cos^2(x)=cot^2(x)cos^2(x)

Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
Prove the Following:
cot^2(x)-cos^2(x)=cot^2(x)*cos^2(x)
Start with left side:
cos*2(x)/sin2(x)-cos^2(x)=[cos^2(x)-sin^2(x)*cos^2(x)]/sin^2(x)
=cos^2(x)*(1-sin^2(x))/sin^2(x)
=cos^2(x)*cos^2(x)/sin^2(x)
=cos^4(x)/sin^2(x)
=cos^2(x)/sin^2(x)*cos^2(x)=cot^2(x)*cos^2(x)
verified: left side=right side