SOLUTION: Solve the following trigonometric equation analytically (using identities if necessary for exact values if possible)for values of x for 0<x<2pi.
sin 8x cos 7x - cos 8x sin 7x =
Algebra ->
Trigonometry-basics
-> SOLUTION: Solve the following trigonometric equation analytically (using identities if necessary for exact values if possible)for values of x for 0<x<2pi.
sin 8x cos 7x - cos 8x sin 7x =
Log On
Question 641343: Solve the following trigonometric equation analytically (using identities if necessary for exact values if possible)for values of x for 0
sin 8x cos 7x - cos 8x sin 7x = 0
Simplify and use pi as needed. Answer by stanbon(75887) (Show Source):
You can put this solution on YOUR website! sin 8x cos 7x - cos 8x sin 7x = 0
======
Formula: sin(x-y) = sinx*cosy - cosx*siny
----
Your problem:
sin 8x cos 7x - cos 8x sin 7x = 0
---
sin(8x-7x) = 0
sin(x) = 0
x = 0 or pi or 2pi etc.
===================
Cheers,
Stan H.