SOLUTION: Solve the following trigonometric equation analytically (using identities if necessary for exact values if possible)for values of x for 0<x<2pi. sin 8x cos 7x - cos 8x sin 7x =

Algebra ->  Trigonometry-basics -> SOLUTION: Solve the following trigonometric equation analytically (using identities if necessary for exact values if possible)for values of x for 0<x<2pi. sin 8x cos 7x - cos 8x sin 7x =       Log On


   



Question 641343: Solve the following trigonometric equation analytically (using identities if necessary for exact values if possible)for values of x for 0 sin 8x cos 7x - cos 8x sin 7x = 0
Simplify and use pi as needed.

Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
sin 8x cos 7x - cos 8x sin 7x = 0
======
Formula: sin(x-y) = sinx*cosy - cosx*siny
----
Your problem:
sin 8x cos 7x - cos 8x sin 7x = 0
---
sin(8x-7x) = 0
sin(x) = 0
x = 0 or pi or 2pi etc.
===================
Cheers,
Stan H.