Use the identity sin(2@) = 2sin(@)·cos(@) where @ = 2x
sin(4x) = sin[2(2x)]
sin(4x) = 2sin(2x)·cos(2x)
Use that identity again with @=x to replace sin(2x). Use
the identity cos(2@) = cosē(@)-sinē(@) to replace cos(2x)
sin(4x) = 2[2sin(x)·cos(x)][cosē(x)-sinē(x)]
sin(4x) = 4sin(x)·cos(x)[cosē(x)-sinē(x)]
We have sin(x) = but we don't have cos(x). We use the identity
sinē(@)+cosē(@)=1 by solving it for cos(@)
cosē(@)=1-sinē(@)
cosē(x)=1-()ē = 1- = =
cos(x)=
cos(x)=
Sinve we are given that < x < , we know that
the cosine is positive, therefore
cos(x)=
sin(4x) = 4sin(x)·cos(x)[cosē(x)-sinē(x)]
sin(4x) = 4()·[-]
sin(4x) = [-]
sin(4x) = []
sin(4x) =
Edwin