SOLUTION: A. Let f(x)=kx^3 with xe{1,3}
B. Determine k such that f(x)=kx^3 is a probability density function
C. Determine P(X<-2) x<- (Means less than or equal to)
D. Determine the exp
Algebra ->
Probability-and-statistics
-> SOLUTION: A. Let f(x)=kx^3 with xe{1,3}
B. Determine k such that f(x)=kx^3 is a probability density function
C. Determine P(X<-2) x<- (Means less than or equal to)
D. Determine the exp
Log On
Question 637397: A. Let f(x)=kx^3 with xe{1,3}
B. Determine k such that f(x)=kx^3 is a probability density function
C. Determine P(X<-2) x<- (Means less than or equal to)
D. Determine the expected value of X
E. Determine the varience of X. Answer by stanbon(75887) (Show Source):
You can put this solution on YOUR website! A. Let f(x)=kx^3 with x e {1,3}
f(1) = k*1^3 = k and f(3) = k*3^3 = 27k
------------------------------------
B. Determine k such that f(x)=kx^3 is a probability density function
Solve k + 27k = 1
28k = 1
k = 1/28
---------------------------
C. Determine P(X<=2) x<= (Means less than or equal to)
P(x<=2) = P(x = 1) = k = 1/28
------------------------------------
D. Determine the expected value of X
E(x) = 1*(1/28) + 3(27/28) = 82/28 = 2.93
-------------------------------------------
E. Determine the variance of X::: 0.3712^2 = 0.1378
Cheers,
Stan H.