SOLUTION: Given the functions f(x)=2x-4, g(x)= √x, and h(x)=x^2+9, calculate each of the following a)f(g(9)) b)h(g(9)) c)g(h(4)) d)g(f(10)) e)h(g(f(20))) f)f(g(h(-4))) g)h(g(f

Algebra ->  Trigonometry-basics -> SOLUTION: Given the functions f(x)=2x-4, g(x)= √x, and h(x)=x^2+9, calculate each of the following a)f(g(9)) b)h(g(9)) c)g(h(4)) d)g(f(10)) e)h(g(f(20))) f)f(g(h(-4))) g)h(g(f      Log On


   



Question 637117: Given the functions f(x)=2x-4, g(x)= √x, and h(x)=x^2+9, calculate each of the following
a)f(g(9))
b)h(g(9))
c)g(h(4))
d)g(f(10))
e)h(g(f(20)))
f)f(g(h(-4)))
g)h(g(f(0)))

Answer by DrBeeee(684) About Me  (Show Source):
You can put this solution on YOUR website!
Given;
f(x) = 2x -4
g(x) = sqrt(x)
h(x) = x^2 + 9
Find
a) f(g(9)) = f(sqrt(9)) = f(+/-3) = 2*(+/-)3 - 4 = 6-4 or -6-4 = 2,-10
b) h(g(9)) = h(sqrt(9)) = (sqrt(9))^2 + 9 = 9 + 9 = 18
c) g(h(4)) = g(4^2 +9) = g(25) = sqrt(25) = +/- 5
d) g(f(10)) = g(10^2 +9) = sqrt(109) = +/- sqrt(109)
e) h(g(f(20))) = h(g(409))) = f(sqrt(409)) = -4 +/-2*sqrt(409)
f) f(g(h(-4))) = f(g(25)) = f(+/-5) = -4 +/-2*5 = -14,6
g) h(g(f(0))) = h(g(-4)) = h(sqrt(-4)) = (sqrt(-4))^2 + 9 = -4 + 9 = 5