SOLUTION: 4sin^2-3=0 tan2x=cotx sinx=cosx=0 3tan^2x+4secx=-4

Algebra ->  Trigonometry-basics -> SOLUTION: 4sin^2-3=0 tan2x=cotx sinx=cosx=0 3tan^2x+4secx=-4      Log On


   



Question 63363This question is from textbook Advanced Mathmatical concepts
: 4sin^2-3=0
tan2x=cotx
sinx=cosx=0
3tan^2x+4secx=-4
This question is from textbook Advanced Mathmatical concepts

Answer by venugopalramana(3286) About Me  (Show Source):
You can put this solution on YOUR website!
PLEASE TYPE PROPERLY TO GET CORRECT ANSWERS..FIRSTLY WHAT DO YOU WANT??TO PROVE ?? OR TO SOLVE ??
YOU WANT A SOLUTION OR GENERAL SOLUTION
4sin^2-3=0...WHAT IS THIS ???WHAT IS IT TO BE DONE??
tan2x=cotx...OK..SOLVE?
TAN(2X)=COT(X)=TAN{(PI/2)-X)}
2X = (PI/2)-X
3X =PI/2
X=PI/6...IS ONE SOLUTION
sinx=cosx=0............IMPOSSIBLE! BOTH SIN(X) AND COS(X) CANNOT EQUAL ZERO
3tan^2x+4secx=-4....SOLVE??..OK
3[SEC^2(X)-1]+4SEC(X)+4=0
3SEC^2(X)+4SEC(X)+1=0
[3SEC(X)+1][SEC(X)+1]=0
3SEX(X)+1=0..........OR SEC(X) =-1/3 ...NOT POSSIBLE
SEC(X)+1=0
SEC(X)=-1
X= PI IS ONE SOLUTION