SOLUTION: 4. Find the formula for the linear function that passes through the point P = ( -4, -1 ) and is perpendicular to the linear function g(x) which has the properties: g(2) = 9 g(-1

Algebra ->  Functions -> SOLUTION: 4. Find the formula for the linear function that passes through the point P = ( -4, -1 ) and is perpendicular to the linear function g(x) which has the properties: g(2) = 9 g(-1      Log On


   



Question 629919: 4. Find the formula for the linear function that passes through the point P = ( -4, -1 ) and is perpendicular to the linear function g(x) which has the properties:
g(2) = 9
g(-1) = -1

Answer by ewatrrr(24785) About Me  (Show Source):
You can put this solution on YOUR website!
 
Hi
Find the formula for the linear function that passes through the point P = ( -4, -1 )
and is perpendicular to the linear function g(x) which has the properties:
g(2) = 9
g(-1) = -1
As Ordered Pairs(x,y)
(2,9)
(-1,-1) m = 10/3 m+=%28y%5B2%5D+-+y%5B1%5D%29%2F%28x%5B2%5D+-+x%5B1%5D%29
New Line:
y = mx + b || Note perpendicular... m = -3/10
y = (-3/10)x + b
-1+=+%28-3%2F10%29%2A%28-4%29+%2B+b Using pt(-4,-1) to solve for b
-22/10 = b
y = (-3/10)x -22/10 or in standard form 3x + 10y = -22