SOLUTION: Solve ln(2x-1)-ln(4)=ln(x-2)

Algebra ->  Logarithm Solvers, Trainers and Word Problems -> SOLUTION: Solve ln(2x-1)-ln(4)=ln(x-2)      Log On


   



Question 62960: Solve ln(2x-1)-ln(4)=ln(x-2)
Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
Solve ln(2x-1)-ln(4)=ln(x-2)
ln(2x-1)=ln[4/(x-2)]
2x-1 = 4/(x-2)
2x^2-4x-x+2=-4
2x^2-5x+6=0
x=[5+-sqrt(25-4(2)(6))]/4
x=[5+-1]/4
x=3/2 or x=1
Both solution are extraneous:
If x=3/2, ln(x-2)=ln(-1/2) which does not exist.
If x=1, ln(x-2)=ln(-1) which does not exist.
Conclusion: No solution
Cheers,
Stan H.