SOLUTION: log(1-2x)-2logx = 1-log(2-5x)

Algebra ->  Logarithm Solvers, Trainers and Word Problems -> SOLUTION: log(1-2x)-2logx = 1-log(2-5x)      Log On


   



Question 624311: log(1-2x)-2logx = 1-log(2-5x)
Found 2 solutions by oscargut, ewatrrr:
Answer by oscargut(2103) About Me  (Show Source):
You can put this solution on YOUR website!
log(1-2x)-2logx = 1-log(2-5x)
log(1-2x)-log(x^2) = log(10)-log(2-5x)
log((1-2x)/x^2) = log(10/(2-5x))
(1-2x)/x^2 = 10/(2-5x)
(1-2x)(2-5x)=10x^2

10x^2-9x+2 = 10x^2
-9x+2 = 0
x = 2/9
Answer: x = 2/9



Answer by ewatrrr(24785) About Me  (Show Source):
You can put this solution on YOUR website!
 
Hi,
log(1-2x)-2logx = 1-log(2-5x)
log(1-2x)-2logx + log(2-5x) = 1
log(1-2x)(2-5x)/x^2 = 1
(1-2x)(2-5x)/x^2 = 10
(1-2x)(2-5x) = 10x^2
2 - 9x + 10x^2 = 10x^2
2 = 9x
2/9 = x