SOLUTION: if log base b (2)=x and log base b (3)=y, evaluate the following terms of x and y:
log base b (24)=
log base b (216)=
log base b (16/27)=
(log base b (27))/(log base b
Algebra ->
Logarithm Solvers, Trainers and Word Problems
-> SOLUTION: if log base b (2)=x and log base b (3)=y, evaluate the following terms of x and y:
log base b (24)=
log base b (216)=
log base b (16/27)=
(log base b (27))/(log base b
Log On
Question 617405: if log base b (2)=x and log base b (3)=y, evaluate the following terms of x and y:
log base b (24)=
log base b (216)=
log base b (16/27)=
(log base b (27))/(log base b (4))= Answer by stanbon(75887) (Show Source):
You can put this solution on YOUR website! if log base b (2)=x and log base b (3)=y, evaluate the following terms of x and y:
log base b (24)= logb(8*3) = logb(8) + logb(3) = 3log(2)+logb(3 = 3x+y
---------------------------------------------------
log base b (216) = logb(6^3) = logb(3^3*2^3) = logb(3^3)+logb(2^3
= 3log(3) + 3log(2)
= 3y + 3x
---------------------------------------
log base b (16/27)= logb(2^4)-logb(3^3) = 4logb(2)-3logb(3) = 4x-3y
------------------------------------
(log base b (27))/(log base b (4))= logb(3^3)/logb(2^2) = 3log(3)/2log(2)
-------
= 3y/2x
=============
Cheers,
Stan H.
==================