SOLUTION: Log[5](2x+10-log[5](x)=4
Algebra
->
Trigonometry-basics
-> SOLUTION: Log[5](2x+10-log[5](x)=4
Log On
Algebra: Trigonometry
Section
Solvers
Solvers
Lessons
Lessons
Answers archive
Answers
Click here to see ALL problems on Trigonometry-basics
Question 616836
:
Log[5](2x+10-log[5](x)=4
Answer by
nerdybill(7384)
(
Show Source
):
You can
put this solution on YOUR website!
I think you forgot a right parenthesis. I'll assume you meant:
Log[5](2x+10)-log[5](x)=4
applying log rules:
Log[5](2x+10)/(x)=4
(2x+10)/(x)= 5^4
(2x+10)/x = 625
2x+10 = 625x
10 = 623x
10/623 = x
0.0161 = x