SOLUTION: 1+cosx/sinx + sinx/1+cosx=4 csc=sinxtanx + cosx

Algebra ->  Trigonometry-basics -> SOLUTION: 1+cosx/sinx + sinx/1+cosx=4 csc=sinxtanx + cosx      Log On


   



Question 61647: 1+cosx/sinx + sinx/1+cosx=4
csc=sinxtanx + cosx

Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
1+cosx/sinx + sinx/1+cosx=4
----------------
Working with the 1st fraction:
Multiply numerator and denominator by 1-cosx to get:
(sinx)^2]/[sinx(1-cosx)]
=sinx/(1-cosx)
Rewriting the problem you get:
sinx/(1-cosx) + sinx/(1+cosx) = 4
Multiply thru by (1-cosx)(1+cosx) which happens to be (sinx)^2 you get:
sinx(1+cosx) + sinx(1-cosx)=4(sinx)^2
2sinx =4(sinx)^2
1=2sinx
sinx=1/2
x=30 degrees.
-----------------
csc=sinxtanx + cosx
(1/sinx) = (sinx)^2/cosx + cosx
Multiply thru by sinx(cosx) to get:
cosx = (sinx)^3 + sinx(cosx)^2
cosx = (sinx)[(sinx)^2+(cosx)^2)
cosx = sinx
tanx = 1
x=45 degrees
--------
Cheers,
Stan H.