SOLUTION: solve the equation in the interval [0,2π); sinx-cosx-tanx=-1

Algebra ->  Trigonometry-basics -> SOLUTION: solve the equation in the interval [0,2π); sinx-cosx-tanx=-1      Log On


   



Question 611768: solve the equation in the interval [0,2π); sinx-cosx-tanx=-1
Answer by stanbon(75887) About Me  (Show Source):
You can put this solution on YOUR website!
solve the equation in the interval [0,2π);
sinx-cosx-tanx = -1
----
x = 0 is a solution:
sin(0) - cos(0) - sin(0)/cos(0) = -1
0 -1 - 0/1 = -1
-1 = -1
-----------------
x = 225 is a solution:
sin(225) -cos(225) - sin(225)/cos(225) = -1
-sqrt(2)/2 - (-sqrt(2)/2) - [-sqrt(2)/2)/-sqrt(2)/2] = -1
---
0 -1 = -1
====================
Cheers,
Stan H.
====================