SOLUTION: Graph the ellipses 49((y-2)^2-1)=-(x+3)^2

Algebra ->  Quadratic-relations-and-conic-sections -> SOLUTION: Graph the ellipses 49((y-2)^2-1)=-(x+3)^2      Log On


   



Question 609994: Graph the ellipses
49((y-2)^2-1)=-(x+3)^2

Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
Graph the ellipses
49((y-2)^2-1)=-(x+3)^2
49(y-2)^2-49=-(x+3)^2
49(y-2)^2+(x+3)^2=49
divide by 49
(y-2)^2+(x+3)^2/49=1
(x+3)^2/49+(y-2)^2=1
This is an equation of an ellipse with horizontal major axis.
Its standard form: (x-h)^2/a^2+(y-k)^2/b^2=1,a>b, (h,k)=(x,y) coordinates of center
For given equation:
center: (-3,2)
a^2=49
a=√49=7
length of horizontal major axis=2a=14
..
b^2=1
b=1
length of minor axis=2b=2
..
see graph below:
y=±(1-(x+3)^2/49)^.5