|
Question 607849: does (4x^4y^8)(4x^4y^8) have the same value as (2x^2y^4)^4?
Answer by jim_thompson5910(35256) (Show Source):
You can put this solution on YOUR website! (4x^4y^8)(4x^4y^8)
(4*4)*(x^4*x^4)*(y^8*y^8)
16*(x^(4+4))*(y^(8+8))
16*x^8*y^16
So (4x^4y^8)(4x^4y^8) simplifies to 16*x^8*y^16
-------------------------------------------------------
(2x^2y^4)^4
2^4*(x^2)^4*(y^4)^4
16*(x^(2*4))*(y^(4*4))
16*x^8*y^16
So (2x^2y^4)^4 simplifies to 16*x^8*y^16
=========================================================================
Since both expressions simplify to 16*x^8*y^16, this must mean that the two expressions are equivalent.
So essentially, (4x^4y^8)(4x^4y^8) is the same as (2x^2y^4)^4
--------------------------------------------------------------------------------------------------------------
If you need more help, email me at jim_thompson5910@hotmail.com
Also, please consider visiting my website: http://www.freewebs.com/jimthompson5910/home.html and making a donation. Thank you
Jim
--------------------------------------------------------------------------------------------------------------
|
|
|
| |