SOLUTION: find dy/dx y=2 ln x+6log2^x

Algebra ->  Exponents -> SOLUTION: find dy/dx y=2 ln x+6log2^x      Log On


   



Question 605340: find dy/dx
y=2 ln x+6log2^x

Answer by jim_thompson5910(35256) About Me  (Show Source):
You can put this solution on YOUR website!
y = 2*ln(x) + 6*log(2,x)

dy/dx = d/dx( 2*ln(x) + 6*log(2,x) )

dy/dx = d/dx( 2*ln(x) ) + d/dx( 6*log(2,x) )

dy/dx = 2*d/dx( ln(x) ) + 6*d/dx( log(2,x) )

dy/dx = 2*(1/x)+ 6*d/dx( ln(x)/ln(2) )

dy/dx = 2*(1/x)+ 6*(1/ln(2))*d/dx( ln(x) )

dy/dx = 2*(1/x)+ 6*(1/ln(2))*(1/x)

dy/dx = 2/x+ 6/(x*ln(2))


So the answer is %28dy%29%2F%28dx%29+=+2%2Fx%2B+6%2F%28x%2Aln%282%29%29