SOLUTION: solve for log(3x-1) + log2= log4 + log(x+2)

Algebra ->  Logarithm Solvers, Trainers and Word Problems -> SOLUTION: solve for log(3x-1) + log2= log4 + log(x+2)      Log On


   



Question 603613: solve for log(3x-1) + log2= log4 + log(x+2)
Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
solve for
log(3x-1) + log2= log4 + log(x+2)
log(3x-1) + log2- log4 - log(x+2)=0
log(3x-1) + log2- [log4 + log(x+2)]=0
place under single log
log[(3x-1)*2/4*(x+2)]=0
convert to exponential form: base(10) raised to log of number(0)=number[(3x-1)*2/4*(x+2)]
10^0=[(3x-1)*2/4*(x+2)]=1
2(3x-1)=4(x+2)
6x-2=4x+8
2x=10
x=5