SOLUTION: ((cos x)/(1-tan x))+((sin x)/(1-cot x))= sin x+ cos x How do you work out this identity?
Algebra
->
Test
-> SOLUTION: ((cos x)/(1-tan x))+((sin x)/(1-cot x))= sin x+ cos x How do you work out this identity?
Log On
Test Calculators and Practice
Test
Answers archive
Answers
Word Problems
Word
Lessons
Lessons
Click here to see ALL problems on test
Question 602462
:
((cos x)/(1-tan x))+((sin x)/(1-cot x))= sin x+ cos x
How do you work out this identity?
Answer by
jim_thompson5910(35256)
(
Show Source
):
You can
put this solution on YOUR website!
cos(x)/(1 - tan(x))+sin(x)/(1 - cot(x)) = sin(x) + cos(x)
cos(x)/(1 - tan(x))+sin(x)/(1 - 1/tan(x)) = sin(x) + cos(x)
cos(x)/(1 - tan(x))+sin(x)/(tan(x)/tan(x) - 1/tan(x)) = sin(x) + cos(x)
cos(x)/(1 - tan(x))+sin(x)/( (tan(x)-1)/tan(x) ) = sin(x) + cos(x)
cos(x)/(1 - tan(x))+sin(x)*( tan(x)/(tan(x)-1) ) = sin(x) + cos(x)
cos(x)/(1 - tan(x))+(sin(x)*tan(x))/( tan(x)-1) = sin(x) + cos(x)
cos(x)/(1 - tan(x))+(sin(x)*tan(x))/( -(-tan(x)+1) ) = sin(x) + cos(x)
cos(x)/(1 - tan(x))+(sin(x)*tan(x))/( -(1 - tan(x)) ) = sin(x) + cos(x)
cos(x)/(1 - tan(x)) - (sin(x)*tan(x))/(1 - tan(x)) = sin(x) + cos(x)
(cos(x) - sin(x)*tan(x))/(1 - tan(x)) = sin(x) + cos(x)
(cos(x) - sin(x)*(sin(x)/cos(x)))/(1 - tan(x)) = sin(x) + cos(x)
(cos(x) - sin^2(x)/cos(x))/(1 - tan(x)) = sin(x) + cos(x)
(cos^2(x)/cos(x) - sin^2(x)/cos(x))/(1 - tan(x)) = sin(x) + cos(x)
((cos^2(x) - sin^2(x))/cos(x))/(1 - tan(x)) = sin(x) + cos(x)
((cos^2(x) - sin^2(x))/cos(x))*(1/(1 - tan(x))) = sin(x) + cos(x)
(cos^2(x) - sin^2(x))/(cos(x)(1 - tan(x))) = sin(x) + cos(x)
(cos^2(x) - sin^2(x))/(cos(x) - cos*tan(x)) = sin(x) + cos(x)
(cos^2(x) - sin^2(x))/(cos(x) - cos(x)*sin(x)/cos(x)) = sin(x) + cos(x)
(cos^2(x) - sin^2(x))/(cos(x) - sin(x)) = sin(x) + cos(x)
((cos(x) - sin(x))(cos(x) + sin(x)))/(cos(x) - sin(x)) = sin(x) + cos(x)
cos(x) + sin(x) = sin(x) + cos(x)
sin(x) + cos(x) = sin(x) + cos(x)
This verifies the identity.