SOLUTION: A man travels 1 km North, 2 km East, 3 km North, and 4 km East. How far is he from the starting point? If the lengths of the legs of a triangle are a, b, find the length h of the a

Algebra ->  Pythagorean-theorem -> SOLUTION: A man travels 1 km North, 2 km East, 3 km North, and 4 km East. How far is he from the starting point? If the lengths of the legs of a triangle are a, b, find the length h of the a      Log On


   



Question 598456: A man travels 1 km North, 2 km East, 3 km North, and 4 km East. How far is he from the starting point? If the lengths of the legs of a triangle are a, b, find the length h of the altitude to the hypotenuse in terms of a and b.
Found 2 solutions by mohits610@gmail.com, Alan3354:
Answer by mohits610@gmail.com(6) About Me  (Show Source):
You can put this solution on YOUR website!
2.6+1.732=4.332{approx.}

Answer by Alan3354(69443) About Me  (Show Source):
You can put this solution on YOUR website!
A man travels 1 km North, 2 km East, 3 km North, and 4 km East. How far is he from the starting point?
------------------
That's a total of 4 km North and 6 km East.
d+=+sqrt%28a%5E2+%2B+b%5E2%29+=+sqrt%284%5E2+%2B+6%5E2%29+=+sqrt%2852%29
d =~ 7.211 km
------------
============
If the lengths of the legs of a triangle are a, b, find the length h of the altitude to the hypotenuse in terms of a and b.
------
c = length of hypotenuse = sqrt(a^2 + b^2)
----
h/b = a/c
h = ab/c
h = ab/sqrt(a^2 + b^2)