SOLUTION: Solve algebraically for all values of x in the interval 0&#8804; x < 360.2 sin2 x&#8722; 4 sin x = cos2 x &#8722; 2 Express your answers to the nearest degree.

Algebra ->  Trigonometry-basics -> SOLUTION: Solve algebraically for all values of x in the interval 0&#8804; x < 360.2 sin2 x&#8722; 4 sin x = cos2 x &#8722; 2 Express your answers to the nearest degree.      Log On


   



Question 594974: Solve algebraically for all values of x in the interval 0≤ x < 360.2 sin2 x− 4 sin x = cos2 x − 2
Express your answers to the nearest degree.

Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
Solve algebraically for all values of x in the interval 0≤ x < 360.2 sin2 x− 4 sin x = cos2 x − 2
Express your answers to the nearest degree.
**
2 sin2 x− 4 sin x = cos2 x − 2
2sin^2-4sin=cos^2-2
2sin^2-4sin=1-sin^2-2
3sin^2-4sin+1=0
(3sinx-1)(sinx-1)=0
..
3sinx+1=0
sinx=-1/3
x≈199º and 341º (in quadrants III and IV where sin<0)
..
sinx-1=0
sinx=1
x=90º
ans:
x=90º, 199º and 341º