SOLUTION: A gas station sells 900 gallons of gasoline per hour if it charges $ 2.15 per gallon but only 800 gallons per hour if it charges $ 2.40 per gallon. Assuming a linear model
(a) H
Algebra ->
Graphs
-> SOLUTION: A gas station sells 900 gallons of gasoline per hour if it charges $ 2.15 per gallon but only 800 gallons per hour if it charges $ 2.40 per gallon. Assuming a linear model
(a) H
Log On
Question 590084: A gas station sells 900 gallons of gasoline per hour if it charges $ 2.15 per gallon but only 800 gallons per hour if it charges $ 2.40 per gallon. Assuming a linear model
(a) How many gallons would be sold per hour of the price is $ 2.35 per gallon?
(b) What must the gasoline price be in order to sell 1600 gallons per hour?
(c) Compute the revenue taken at the four prices mentioned in this problem -- $ 2.15 , $ 2.35 , $ 2.40 and your answer to part (b). Which price gives the most revenue? Answer by josmiceli(19441) (Show Source):
You can put this solution on YOUR website! Let = gallons of gas sold per hour
Let = price per gallon in dollars
Plot on the vertical axis
Plot on the horizontal
use the point slope formula
--------------------
(a)
820 gallons/hr would be sold
-----------------------
(b)
The price must be $ .40 / gallon to sell 1600 gallons/hr
-----------------------
(c)
(1)
Revenue = $ 1,935
(2)
Revenue = $ 1,920
(3)
Revenue = $ 1,927
Revenue = $640
$2.15 / gallon gives the most revenue