SOLUTION: log[b](8) + log[b](x^2) = log[b](x)

Algebra ->  Logarithm Solvers, Trainers and Word Problems -> SOLUTION: log[b](8) + log[b](x^2) = log[b](x)      Log On


   



Question 588594: log[b](8) + log[b](x^2) = log[b](x)
Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
log[b](8) + log[b](x^2) = log[b](x)
logb(8) + logb(x^2) = logb(x)
logb(8) + logb(x^2) -logb(x)=0
place under single log
logb[8x^2/x]=logb(8x)=0
convert to exponential form: base(b) raised to log of number(0)=number(8x)
b^0=8x=1
x=1/8
note: This means b could be any base.