Question 587342: solve the following equation:
ln(x-5) + ln(x-6)=ln(16-2x)
Answer by lwsshak3(11628) (Show Source):
You can put this solution on YOUR website! solve the following equation:
ln(x-5) + ln(x-6)=ln(16-2x)
ln(x-5) + ln(x-6)-ln(16-2x)=0
place under single log
ln[(x-5)(x-6)/(16-2x)]=0
convert to exponential form: base(e) raised to log of number(0)=number[(x-5)(x-6)/(16-2x)]
e^0=(x-5)(x-6)/(16-2x)=1
(x-5)(x-6)=(16-2x)
x^2-11x+30=16-2x
x^2-9x+14=0
(x-7)(x-2)=0
x=2 (reject, (x-5)>0)
or
x=7
|
|
|