SOLUTION: if sin theta=(1/4), theta in quadrant II, find the exact value of cos(theta+pi/6)

Algebra ->  Trigonometry-basics -> SOLUTION: if sin theta=(1/4), theta in quadrant II, find the exact value of cos(theta+pi/6)      Log On


   



Question 584605: if sin theta=(1/4), theta in quadrant II, find the exact value of cos(theta+pi/6)
Answer by lwsshak3(11628) About Me  (Show Source):
You can put this solution on YOUR website!
if sin theta=(1/4), theta in quadrant II, find the exact value of cos(theta+pi/6)
**
Using cos addition formula:
use x for theta
cos(x+π/6)=cosx*cos(π/6)-sinx*sin(π/6)
sinx=1/4
cosx=√15/4
cos(π/6)=√3/2
sin(π/6)=1/2
cos(x+π/6)=(√15/4*√3/2)-(1/4*1/2)
cos(x+π/6)=(√45/8)-(1/8 )
cos(x+π/6)=(√45-1)/8)