You can put this solution on YOUR website! 2x - 4y + 0z =12
3x + 0y + 5z = 3
0x + 4y - 2z = 7
------------------
Add eqn 1 & 3
2x - 2z = 19 eqn A
3x + 5z = 3 eqn 2
--------------
Multiply eqn A by 3 and eqn 2 by 2
6x - 6z = 57 eqn A * 3
6x +10z = 6 eqn 2 * 2
---------------------- Subtract
-16z = 51
z = -51/16
---------
Sub for z in eqn 2, find x
Sub for a in eqn 3, find y
-----------------------------
That's one way. I prefer determinants, tho.