SOLUTION: 1). If f(x) =2x2+1 and g(x)=x-3, find (f o g)(x).
a. (f o g)(x) = 2x 2 - 17
b. (f o g)(x) = 2x 2 - 12x + 19
c. (f o g)(x) = 2x 2 - 2
d. (f o g)(x) = 2x 2 - 12x + 13
2). Is
Algebra ->
Functions
-> SOLUTION: 1). If f(x) =2x2+1 and g(x)=x-3, find (f o g)(x).
a. (f o g)(x) = 2x 2 - 17
b. (f o g)(x) = 2x 2 - 12x + 19
c. (f o g)(x) = 2x 2 - 2
d. (f o g)(x) = 2x 2 - 12x + 13
2). Is
Log On
Question 57476: 1). If f(x) =2x2+1 and g(x)=x-3, find (f o g)(x).
a. (f o g)(x) = 2x 2 - 17
b. (f o g)(x) = 2x 2 - 12x + 19
c. (f o g)(x) = 2x 2 - 2
d. (f o g)(x) = 2x 2 - 12x + 13
2). Is the graph of y=x2+5 symmetric with respect to the origin, the x-axis, the y-axis, or the line y = x?
a. the x-axis
b. the y-axis
c. the origin
d. the line y = x
You can put this solution on YOUR website! 1). If and , find (f o g)(x).
a. (f o g)(x) = . (f o g)(x) =
c. (f o g)(x) =
d. (f o g)(x) =
:
Here's why:
(fog)(x)=f(g(x))=f(x-3) substitute (x-3) everywhere there is an x in the f(x) function and you get: (b)
:
2). Is the graph of symmetric with respect to the origin, the x-axis, the y-axis, or the line y = x?
a. the x-axis . the y-axis
c. the origin
d. the line y = x
:
Here's why
The rule says that if f(-x)=f(x) there is symmetry to the y-axis.
Therefore f(-x)=f(x), and the graph is symmetric to the y-axis, see:
Happy Calculating!!!