| 
 
 
| Question 572994:  Find an equation in standard form of the parabola passing through the following points.
 (0,-4),(1,1),(2,8)
 Answer by lwsshak3(11628)
      (Show Source): 
You can put this solution on YOUR website! Find an equation in standard form of the parabola passing through the following points. (0,-4),(1,1),(2,8)
 **
 Standard form of equation for a parabola: y=A(x-h)^2+k, (h,k) being the (x,y) coordinates of the vertex.
 ..
 Solve for A, h and k with the following 3 equations using 3 given points:
 1)-4=A(0-h)^2+k
 2)1=A(1-h)^2+k
 3)8=A(2-h)^2+k
 ..
 1)-4=A(h)^2+k
 2)1=A(1-h)^2)+k
 subtract, to eliminate k
 3)-5=A(h^2-(1-h)^2)
 -5=A(h^2-1+2h-h^2)
 -5=A(-1+2h
 ..
 2)1=A(1-h)^2+k
 3)8=A(2-h)^2+k
 subtract to eliminate k
 4)-7=A(1-h)^2-(2-h)^2)
 -7=A(1-2h+h^2-4+4h-h^2)
 -7=A(-3+2h)
 ..
 -5=A(-1+2h
 -7=A(-3+2h)
 ..
 -5=-A+2hA
 -7=-3A+2hA
 subtract
 2=2A
 A=1
 ..
 -5=-A+2hA
 -5=-1+2h
 2h=-4
 h=-2
 ..
 1=A(1-h)^2+k (eq 2)
 1=1*(1+2)^2+k
 1=9+k
 k=-8
 ..
 A=1, h=-2, k=-8
 Equation of Parabola
 y=A(x-h)^2+k
 y=(x+2)^2-8
 
 
 
 | 
  
 | 
 |